Geometric Configurations of Singularities for Quadratic Differential Systems with Three Distinct Real Simple Finite Singularities

نویسندگان

  • JOAN C. ARTÉS
  • JAUME LLIBRE
  • DANA SCHLOMIUK
چکیده

In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is finer than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci (or saddles) of different orders. Such distinctions are however important in the production of limit cycles close to the foci (or loops) in perturbations of the systems. The notion of geometric equivalence relation of configurations of singularities allows us to incorporate all these important geometric features which can be expressed in purely algebraic terms. This equivalence relation is also finer than the qualitative equivalence relation introduced in [18]. The geometric classification of all configurations of singularities, finite and infinite, of quadratic systems was initiated in [3] where the classification was done for systems with total multiplicity mf of finite singularities less than or equal to one. That work was continued in [4] where the geometric classification was done for the case mf = 2. In this article we go one step further and obtain the geometric classification of singularities, finite and infinite, for the subclass of quadratic differential systems possessing three distinct real finite singularities. We obtain 147 geometrically distinct configurations of singularities for this family. We also give here the global bifurcation diagram of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for this class of systems. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants, fact which gives us an algorithm for determining the geometric configuration of singularities for any quadratic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GEOMETRIC CONFIGURATIONS OF SINGULARITIES FOR QUADRATIC DIFFERENTIAL SYSTEMS WITH TOTAL FINITE MULTIPLICITY mf = 2

In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [3]. This relation is deeper than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci of diffe...

متن کامل

From Topological to Geometric Equivalence in the Classification of Singularities at Infinity for Quadratic Vector Fields

In the topological classification of phase portraits no distinctions are made between a focus and a node and neither are they made between a strong and a weak focus or between foci of different orders. These distinctions are however important in the production of limit cycles close to the foci in perturbations of the systems. The distinction between the one direction node and the two directions...

متن کامل

Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics

This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...

متن کامل

Rings of Singularities

This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...

متن کامل

Solution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method

In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016